

(according to regulation EU No 305/2011)

No. LO-001-CPR2025-06-12

1) Code of the product type: **1.0039** 

Type: Hot finished structural hollow sections (seamless tubes) S235JRH according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager – LO a.s.

| Essential characteristic |                                                              |                  | Performance  | 9                 |           | Harmonised technical specification |
|--------------------------|--------------------------------------------------------------|------------------|--------------|-------------------|-----------|------------------------------------|
| Tolerances on            |                                                              |                  |              | Values            |           |                                    |
| dimensions and           | Outsid                                                       | e diameter       | ±1%, mir     | ±0,5 and max      | ± 10mm    | EN 40040 0-2040                    |
| shape                    | Wall t                                                       | thickness        | - 10% (lo    | oc12,5%) / +8     | % mass    |                                    |
|                          | 0                                                            | vality           | -            | 2%                |           | EN 10210-2:2019                    |
|                          | Strai                                                        | ightness         | 0,2% of to   | tal length and    | 3mm/1m    |                                    |
|                          | r                                                            | Mass             | -6% / +8%    | 6 for particula   | r lengths |                                    |
| Yield strength           | Nominal th                                                   | nickness (mm)    |              | Values            |           |                                    |
|                          | >                                                            | ≤                | ReH min      |                   |           |                                    |
|                          |                                                              |                  | (MPa)        |                   |           |                                    |
|                          |                                                              | 16               | 235          |                   |           |                                    |
|                          | 16                                                           | 40               | 225          |                   |           | <u></u>                            |
| Tensile strength         | Nominal th                                                   | nickness (mm)    |              | Values            |           |                                    |
|                          | >                                                            | ≤                | Rm min (MPa) | max               | (MPa)     |                                    |
|                          |                                                              | 100              | 360          | 5                 | 10        |                                    |
| Elongation               | Nominal th                                                   | nickness (mm)    |              | Values            |           | <u> </u>                           |
|                          | >                                                            | ≤                | min (%)      |                   |           |                                    |
|                          |                                                              | 40               | 26           |                   |           |                                    |
| Impact strength          | Nominal th                                                   | nickness (mm)    |              | Values            |           | EN 10210-1:2006                    |
|                          | >                                                            | ≤                | KV2Lmin (J)  |                   |           | EN 10210-1.2000                    |
|                          |                                                              | 40               | 27 at 20°C   |                   |           |                                    |
| Weldability              | Nominal th                                                   | nickness (mm)    |              | Values            |           |                                    |
|                          | >                                                            | ≤                |              | max               | x (%)     |                                    |
| Chemical                 |                                                              | 40               |              | C: 0,17           | P: 0,040  |                                    |
| composition + CEV        |                                                              |                  |              | Mn: 1,40 S: 0,040 |           |                                    |
| (cast analysis)          |                                                              |                  |              | N* : 0,009        |           |                                    |
|                          |                                                              | 16               |              | CEV: 0,37         |           |                                    |
|                          | 16                                                           | 40               |              | CEV: 0,39         |           |                                    |
|                          |                                                              | %, N = max.0,012 |              |                   |           |                                    |
|                          | If Al/N ≥ 2 and Al ≥ 0,020%, N maximum value does not apply. |                  |              |                   |           |                                    |
| Durability               |                                                              |                  | NPD          |                   |           |                                    |



(according to regulation EU No 305/2011)

No. LO-002-CPR2025-06-12

1) Code of the product type: **1.0149** 

Type: Hot finished structural hollow sections (seamless tubes) S275J0H according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https: libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

**Marian Kubes** Q-Engineer – LO a.s. Michal Kolar Q/A manager – LO a.s.

Date: 12.06. 2025

£1

| Essential characteristic | Performance    |                              |                           |               |          | Harmonised technical specification |
|--------------------------|----------------|------------------------------|---------------------------|---------------|----------|------------------------------------|
| Tolerances on            |                |                              |                           | Values        |          |                                    |
| dimensions and           | Outside        | diameter                     | ±1%, min ±                | 0,5 and max : | ± 10mm   |                                    |
| shape                    | Wall th        | nickness                     | - 10% (loc.               | -12,5%) / +8% | √ mass   | EN 10210-2:2019                    |
|                          | Ov             | ality                        |                           | 2%            |          | EN 10210-2:2019                    |
|                          | Straig         | ghtness                      | 0,2% of tota              | l length and  | 3mm/1m   |                                    |
| ļ                        | M              | lass                         | -6% / +8% 1               | or particular | lengths  |                                    |
| Yield strength           | Nominal        | thickness                    |                           | Values        | _        |                                    |
|                          | (r             | nm)                          |                           |               |          |                                    |
|                          | >              | ≤                            | ReH min (MPa)             |               |          |                                    |
| ļ                        |                | 16                           | 275                       |               |          |                                    |
|                          | 16             | 40                           | 265                       |               |          |                                    |
| Tensile strength         | Nominal        | thickness                    |                           | Values        |          |                                    |
| ļ                        | (r             | nm)                          |                           |               |          |                                    |
|                          | >              | ≤                            | Rm min (MPa)              | max (         | (MPa)    |                                    |
|                          |                | 3                            | 430                       |               | 30       |                                    |
|                          | 3              | 100                          | 410                       |               | 60       |                                    |
| Elongation               |                | thickness                    |                           | Values        |          |                                    |
| ļ                        | (r             | nm)                          |                           |               |          |                                    |
|                          | >              | ≤                            | min (%)                   |               |          |                                    |
|                          |                | 40                           | 23                        |               |          | EN 40040 4 0000                    |
| Impact strength          |                | thickness                    |                           | Values        |          | EN 10210-1:2006                    |
|                          | · ·            | nm)                          |                           |               |          |                                    |
|                          | >              | ≤                            | KV2Lmin (J)               |               |          |                                    |
|                          |                | 40                           | 27 at 0°C                 |               |          |                                    |
| Weldability              |                | thickness                    |                           | Values        |          |                                    |
|                          | (r             | nm)                          |                           | 1             |          |                                    |
| Chemical                 | >              | ≤                            | max (%)                   |               |          |                                    |
| composition + CEV        |                | 40                           | C: 0,20 P: 0,035          |               |          |                                    |
| (cast analysis)          |                |                              |                           | Mn : 1,50     | S: 0,035 |                                    |
| ļ ļ                      |                | 46                           |                           | N* : 0,009    |          |                                    |
|                          | 16             | 16<br>40                     |                           | CEV: 0,41     |          |                                    |
|                          |                | <b>40</b><br>%, N = max.0,01 | CEV: 0,43                 |               |          |                                    |
|                          |                |                              | 2%.<br>N maximum value do | nes not apply |          |                                    |
| Durability               | / 1/14 = 2 (1) |                              |                           |               |          |                                    |



(according to regulation EU No 305/2011)

No. LO-003-CPR2025-06-12

1) Code of the product type: **1.0138** 

Type: Hot finished structural hollow sections (seamless tubes) S275J2H according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

**Marian Kubes** Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06. 2025

fr

| Essential characteristic          |        |                  | Performance   |                                       | Harmonised technical specification |
|-----------------------------------|--------|------------------|---------------|---------------------------------------|------------------------------------|
| Tolerances on dimensions and      |        | diameter         | ·             | Values<br>0,5 and max ± 10mm          |                                    |
| shape                             |        | nickness         | - 10% (loc.   | -12,5%) / +8% mass                    | EN 10210-2:2019                    |
|                                   |        | ality            | 0.00/ -5+-+-  | 2%<br>I length and 3mm/1m             |                                    |
|                                   |        | ghtness<br>lass  | ,             | or particular lengths                 |                                    |
| Yield strength                    | Nomina | thickness<br>nm) | -0707 +0701   | Values                                |                                    |
|                                   | >      | ,<br>≤           | ReH min (MPa) |                                       |                                    |
|                                   |        | 16               | 275           |                                       |                                    |
|                                   | 16     | 40               | 265           |                                       |                                    |
| Tensile strength                  |        | thickness<br>nm) |               | Values                                |                                    |
|                                   | >      | ≤                | Rm min (MPa)  | max (MPa)                             |                                    |
|                                   |        | 3                | 430           | 580                                   |                                    |
|                                   | 3      | 100              | 410           | 560                                   |                                    |
| Elongation                        |        | thickness<br>nm) |               | Values                                |                                    |
|                                   | ^      | ≤                | min (%)       |                                       | EN 10210-1:2006                    |
|                                   |        | 40               | 23            |                                       | EN 10210-1.2000                    |
| Impact strength                   |        | thickness<br>nm) |               | Values                                |                                    |
|                                   | >      | ≤                | KV2Lmin (J)   |                                       |                                    |
|                                   |        | 40               | 27 at -20°C   |                                       |                                    |
| Weldability                       |        | thickness<br>nm) |               | Values                                |                                    |
| Chemical                          | >      | ≤                |               | max (%)                               |                                    |
| composition + CEV (cast analysis) |        | 40               |               | C: 0,20 P: 0,030<br>Mn: 1,50 S: 0,030 |                                    |
|                                   |        | 16               |               | CEV: 0,41                             |                                    |
|                                   | 16     | 40               |               | CEV: 0,43                             |                                    |
| Durability                        |        |                  | NPD           |                                       |                                    |



(according to regulation EU No 305/2011)

No. LO-004-CPR2025-06-12

1) Code of the product type: 1.0493

> Type: Hot finished structural hollow sections (seamless tubes) S275NH according to EN 10210-1:2006

Intended use or uses of the construction product, in 2) accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

| Tolerances on dimensions and shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Essential characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           | Performance   |                              |           | Harmonised technical specification |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------------|------------------------------|-----------|------------------------------------|
| Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tolerances on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |           |               | Values                       |           |                                    |
| Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dimensions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outside | diameter  | ±1%, min ±    | ±1%, min ±0,5 and max ± 10mm |           |                                    |
| Ovality Straightness Mass   0,2% of total length and 3mm/1m   -6% / +8% for particular lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wall th | hickness  |               |                              |           | EN 40040 0 0040                    |
| Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in the second se | O۱      | ality     | i '           |                              |           | EN 10210-2:2019                    |
| Mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Straig  | ghtness   | 0,2% of tota  | I length and                 | 3mm/1m    |                                    |
| Vield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               |                              |           |                                    |
| Nominal thickness (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yield strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nominal | thickness |               |                              | - T       |                                    |
| Tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (r      | nm)       |               |                              |           |                                    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >       | ≤         | ReH min (MPa) |                              |           |                                    |
| Tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 16        | 275           |                              |           |                                    |
| Chemical Composition + CEV (cast analysis)   Compositio |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16      | 40        | 265           |                              |           |                                    |
| Blongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tensile strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |               | Values                       |           |                                    |
| Blongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >       | ,<br>≤    | Rm min (MPa)  | max                          | (MPa)     |                                    |
| Marcol   M |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 65        |               |                              |           |                                    |
| Ingit.   Itransv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |           |               | Values                       |           |                                    |
| Mominal thickness (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >       | ≤         |               | min (%)                      |           |                                    |
| Impact strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           | longit.       | traı                         | nsv.      |                                    |
| (mm)           >         ≤         KV2Lmin (J)           40         40 at -20°C           Weldability         Nominal thickness (mm)         Values           Chemical composition + CEV (cast analysis)         >         ≤         min (%)         max (%)           Mn : 0,50         Mn : 1,40         P : 0,035         S : 0,030         Nb : 0,050           V : 0,08         Ti : 0,03         Cr : 0,30         Ni : 0,30           Mo : 0,10         Cu : 0,35         N : 0,015         CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 65        | 24            | 2                            | 22        |                                    |
| Nominal thickness (mm)         Values           Chemical composition + CEV (cast analysis)         ≤         min (%)         max (%)           Mn: 0,50         Mn: 0,50         Nb: 0,050           Nb: 0,030         Nb: 0,050           V: 0,08         Ti: 0,03           Cr: 0,30         Ni: 0,30           Mo: 0,10         N: 0,015           CEV: 0,40         CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Impact strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nominal | thickness |               | Values                       |           | EN 10210-1:2006                    |
| Meldability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (r      | nm)       |               |                              |           |                                    |
| Weldability         Nominal thickness (mm)         Values           Chemical composition + CEV (cast analysis)              S ≤ min (%) max (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >       | _         |               |                              |           |                                    |
| (mm)           Chemical composition + CEV (cast analysis)         ≤         min (%)         max (%)           65         Al <sub>tot</sub> : 0,020 Mn: 0,50 Mn: 1,40 P: 0,035 S: 0,030 Nb: 0,050 V: 0,08 Ti: 0,03 Cr: 0,30 Ni: 0,30 Cr: 0,30 Ni: 0,30 Mo: 0,10 N: 0,015 CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           | 40 at -20°C   |                              |           |                                    |
| Chemical composition + CEV (cast analysis)         ≤         min (%)         max (%)           65         Al <sub>tot</sub> : 0,020 Mn: 0,50 Mn: 1,40 P: 0,035 S: 0,030 V: 0,08 Ti: 0,03 Cr: 0,30 Mo: 0,10 N: 0,30 Cr: 0,30 Mo: 0,10 N: 0,015 CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weldability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nominal | thickness |               | Values                       |           |                                    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (r      | nm)       |               |                              |           |                                    |
| (cast analysis)  Mn: 0,50  Mn: 1,40  S: 0,030  V: 0,08  Cr: 0,30  Mo: 0,10  N: 0,015  N: 0,015  CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >       | ≤         | min (%)       | max                          | (%)       |                                    |
| S: 0,030<br>V: 0,08<br>Ti: 0,03<br>Cr: 0,30<br>Mo: 0,10<br>N: 0,015<br>CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 65        |               |                              |           |                                    |
| V: 0,08 Ti: 0,03<br>Cr: 0,30 Ni: 0,30<br>Mo: 0,10 Cu: 0,35<br>N: 0,015<br>CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (cast analysis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           | Mn : 0,50     |                              |           |                                    |
| Cr : 0,30 Ni : 0,30 Mo : 0,10 Cu : 0,35 Ni : 0,015 CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               |                              |           |                                    |
| Mo : 0,10 Cu : 0,35<br>N : 0,015<br>CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               | ,                            |           |                                    |
| N: 0,015<br>CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               | ,                            |           |                                    |
| CEV: 0,40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               |                              | Gu : 0,35 |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |           |               |                              |           |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Durability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | <u> </u>  |               |                              |           |                                    |



(according to regulation EU No 305/2011)

No. LO-005-CPR2025-06-12

1) Code of the product type: **1.0497** 

Type: Hot finished structural hollow sections (seamless tubes) S275NLH according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

**Marian Kubes** Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

| Essential characteristic          |                  |                  | Performance                           |                     |                         | Harmonised technical specification |
|-----------------------------------|------------------|------------------|---------------------------------------|---------------------|-------------------------|------------------------------------|
| Tolerances on                     |                  |                  |                                       | Values              |                         | <b></b>                            |
| dimensions and                    | Outside diameter |                  | ±1%. min ±                            | 0,5 and max         | ± 10mm                  |                                    |
| shape                             | Wall t           | hickness         | · · · · · · · · · · · · · · · · · · · | -12,5%) / +89       |                         |                                    |
|                                   | 0\               | ality            |                                       | 2%                  |                         | EN 10210-2:2019                    |
|                                   |                  | ghtness          | 0,2% of tota                          | I length and        | 3mm/1m                  |                                    |
|                                   | N                | lass             | -6% / +8% f                           | or particular       | lengths                 |                                    |
| Yield strength                    |                  | thickness        |                                       | Values              | _                       |                                    |
|                                   |                  | nm)              | Doll min (MDo)                        |                     |                         |                                    |
|                                   | >                | <u>≤</u><br>16   | ReH min (MPa)<br>275                  |                     |                         |                                    |
|                                   | 16               | 40               |                                       |                     |                         |                                    |
| Tensile strength                  |                  | thickness        | 265                                   | Values              |                         |                                    |
| rensile strength                  |                  | nm)              |                                       | values              |                         |                                    |
|                                   | > ''             | ,<br>≤           | Rm min (MPa)                          | max                 | (MPa)                   |                                    |
|                                   | -                | 65               | 370                                   |                     | 10                      |                                    |
| Elongation                        | Nomina           | thickness        |                                       | Values              |                         |                                    |
| J                                 | (r               | nm)              |                                       |                     |                         |                                    |
|                                   | >                | ≤                |                                       | min (%)             |                         |                                    |
|                                   |                  |                  | longit.                               | traı                | nsv.                    |                                    |
|                                   |                  | 65               | 24                                    | 2                   | 22                      |                                    |
| Impact strength                   |                  | thickness<br>nm) |                                       | Values              |                         | EN 10210-1:2006                    |
|                                   | >                | ≤                | KV2Lmin (J)                           |                     |                         |                                    |
|                                   |                  | 40               | 27 at -50°C                           |                     |                         |                                    |
| Weldability                       |                  | thickness        |                                       | Values              |                         |                                    |
|                                   | (r               | nm)              |                                       | •                   |                         |                                    |
| Chemical                          | >                | ≤                | min (%)                               |                     | (%)                     |                                    |
| composition + CEV (cast analysis) |                  | 65               | Al <sub>tot</sub> : 0,020             | C: 0,20             | Si : 0,40               |                                    |
| (cast allalysis)                  |                  |                  | Mn : 0,50                             | Mn : 1,40           | P: 0,030                |                                    |
|                                   |                  |                  |                                       | S: 0,025<br>V: 0,08 | Nb : 0,050<br>Ti : 0,03 |                                    |
|                                   |                  |                  |                                       | Cr : 0,08           | Ni : 0,30               |                                    |
|                                   |                  |                  |                                       | Mo : 0,10           | Cu : 0,35               |                                    |
|                                   |                  |                  |                                       | N : 0,015           |                         |                                    |
|                                   |                  |                  |                                       | CEV: 0,40           |                         |                                    |
| Durability                        |                  |                  | NPD                                   |                     |                         |                                    |



(according to regulation EU No 305/2011)

No. LO-006-CPR2025-06-12

1) Code of the product type: 1.0547

> Type: Hot finished structural hollow sections (seamless tubes) \$355J0H according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

|                  |                                                           | Performance    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Harmonised technical specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|-----------------------------------------------------------|----------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                           |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Outside diameter |                                                           | ±1%, min ±     | 0,5 and max                                                                           | ± 10mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wall th          | nickness                                                  | ·              |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EN 40040 0 0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ov               | ality                                                     | İ              | 2%                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EN 10210-2:2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Straig           | ghtness                                                   | 0,2% of tota   | I length and                                                                          | 3mm/1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| M                | lass                                                      |                | -                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nominal          | thickness                                                 |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (r               | nm)                                                       |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >                | ≤                                                         | ReH min (MPa)  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                | 16                                                        | 355            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16               | 40                                                        | 345            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                |                                                           |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                | , ,                                                       | Rm min (MPa)   | max                                                                                   | (MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 3                                                         | ` '            |                                                                                       | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3                | 100                                                       | 470            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nominal          | thickness                                                 |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (r               | nm)                                                       |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ^                | ≤                                                         | min (%)        |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 40                                                        | 22             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nominal          | thickness                                                 |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EN 10210-1:2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,                |                                                           |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >                |                                                           |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ļ                |                                                           | 27 at 0°C      |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                           |                | Values                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,                | ,                                                         |                |                                                                                       | (0.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| >                |                                                           |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I                | 40                                                        |                | ,                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| l .              |                                                           |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | 16                                                        | -              |                                                                                       | IN : U,UU9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40               |                                                           | 4              |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                           | 001            | CEV: 0,47                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  |                                                           |                |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11 /1/11 = 2 d1  | iu Al = 0,02070,                                          |                | ies not appry.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Wall ti<br>  Overline   Straig<br>  M   Nominal (r<br>  > | Wall thickness | Outside diameter  Wall thickness Ovality Straightness Mass  Nominal thickness (mm)  > | Outside diameter         ±1%, min ±0,5 and max           Wall thickness         - 10% (loc12,5%) / +8°           Ovality         2%           Straightness         0,2% of total length and -6% / +8% for particular           Nominal thickness (mm)         Values           > ≤         ReH min (MPa)           16         355           16         40           345         Nominal thickness (mm)           > ≤         Rm min (MPa)         max           3         510         6           3         100         470         6           Nominal thickness (mm)         Values           Nominal thickness (mm)         Values           Nominal thickness (mm)         Values           Nominal thickness (mm)         Values           A0         27 at 0°C           Nominal thickness (mm)         Values           > ≤         KV2Lmin (J)           A0         27 at 0°C           Nominal thickness (m)         C : 0,22           Mn : 1,60         Si : 0,55           CEV: 0,45         CEV: 0,47 | Values           Outside diameter         ±1%, min ±0,5 and max ± 10mm           Wall thickness         -10% (loc12,5%) / +8% mass           Ovality         2%           Straightness         0,2% of total length and 3mm/1m           -6% / +8% for particular lengths           Nominal thickness (mm)         Values           >         ≤           ReH min (MPa)         max (MPa)           16         355           16         40           3         510           680         3           3         100         470           630         Nominal thickness (mm)           >         ≤         min (%)           A0         22           Nominal thickness (mm)         Values           Nominal thickness (mm)         Values           >         ≤           KV2Lmin (J)         A0           2         Tat 0°C           Nominal thickness (mm)         Values           >         ≤           KV2Lmin (J)         C: 0,22           Nominal thickness (mm)         C: 0,22           P: 0,035         N*: 0,003           Si: 0,55         N*: 0,009 </td |



(according to regulation EU No 305/2011)

No. LO-007-CPR2025-06-12

**Essential** 

characteristic

Tolerances on

dimensions and

shape

Viold strongth

Durability

1) Code of the product type: **1.0576** 

Type: Hot finished structural hollow sections (seamless tubes) S355J2H according to EN 10210-1:2006

 Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06. 2025

| Yield Strength    | -      | i tnickness<br>mm) |               | values            |                 |
|-------------------|--------|--------------------|---------------|-------------------|-----------------|
|                   | >      |                    | ReH min (MPa) |                   |                 |
|                   |        | 16                 | 355           |                   |                 |
|                   | 16     | 40                 | 345           |                   |                 |
| Tensile strength  | _      | l thickness<br>mm) |               | Values            |                 |
|                   | •      | , ,                | Rm min (MPa)  | max (MPa)         |                 |
|                   | >      | ≤                  |               |                   |                 |
|                   |        | 3                  | 510           | 680               |                 |
|                   | 3      | 100                | 470           | 630               |                 |
| Elongation        | Nomina | l thickness        |               | Values            |                 |
|                   | (1     | mm)                |               |                   |                 |
|                   | >      | ≤                  | min (%)       |                   |                 |
|                   |        | 40                 | 22            |                   | EN 10210-1:2006 |
| Impact strength   | Nomina | l thickness        |               | Values            |                 |
|                   | (1     | mm)                |               |                   |                 |
|                   | >      | ≤                  | KV2Lmin (J)   |                   |                 |
|                   |        | 40                 | 27 at -20°C   |                   |                 |
| Weldability       | Nomina | l thickness        |               | Values            |                 |
|                   | (1     | mm)                |               |                   |                 |
| Chemical          | >      | ≤                  |               | max (%)           |                 |
| composition + CEV |        | 40                 |               | C: 0,22 P: 0,030  |                 |
| (cast analysis)   |        |                    |               | Mn: 1,60 S: 0,030 |                 |
|                   |        |                    |               | Si : 0,55         |                 |
|                   |        | 16                 |               | CEV: 0,45         |                 |
|                   | 16     | 40                 |               | CEV: 0,47         |                 |

NPD

Performance

**Outside diameter** 

Wall thickness

Ovality

Straightness

Mass

Nominal thickness

Values

±1%, min ±0,5 and max ± 10mm

- 10% (loc. -12,5%) / +8% mass

2% 0,2% of total length and 3mm/1m

-6% / +8% for particular lengths

Harmonised technical

specification

EN 10210-2:2019



(according to regulation EU No 305/2011)

No. LO-008-CPR2025-06-12

1) Code of the product type: **1.0539** 

Type: Hot finished structural hollow sections (seamless tubes) S355NH according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar Q/A manager – LO a.s.

| Essential characteristic          |         |                  | Performance               |                     |                         | Harmonised technical specification |
|-----------------------------------|---------|------------------|---------------------------|---------------------|-------------------------|------------------------------------|
| Tolerances on                     |         |                  |                           | Values              |                         | opcomodion                         |
| dimensions and                    | Outside | diameter         | ±1%, min +                | 0,5 and max         | ± 10mm                  |                                    |
| shape                             |         | hickness         |                           | -12,5%) / +8%       |                         |                                    |
| ·                                 |         | ality            | 1070 (1001                | 2%                  | , o macc                | EN 10210-2:2019                    |
|                                   |         | ghtness          | 0.2% of tota              | I length and        | 3mm/1m                  |                                    |
|                                   |         | lass             | ,                         | or particular       |                         |                                    |
| Yield strength                    | Nomina  | thickness        |                           | Values              | - J                     |                                    |
| <b>3</b>                          | (r      | nm)              |                           |                     |                         |                                    |
|                                   | >       | ≤                | ReH min (MPa)             |                     |                         |                                    |
|                                   |         | 16               | 355                       |                     |                         |                                    |
|                                   | 16      | 40               | 345                       |                     |                         |                                    |
| Tensile strength                  |         | thickness<br>nm) |                           | Values              |                         |                                    |
|                                   | ^       | ≤                | Rm min (MPa)              | max                 | (MPa)                   |                                    |
|                                   |         | 65               | 470                       | 6:                  | 30                      |                                    |
| Elongation                        |         | thickness<br>nm) |                           | Values              |                         |                                    |
|                                   | >       | ≤                |                           | min (%)             |                         |                                    |
|                                   |         |                  | longit.                   | trar                | nsv.                    |                                    |
|                                   |         | 65               | 22                        | 2                   | 20                      |                                    |
| Impact strength                   | Nomina  | thickness        |                           | Values              |                         |                                    |
|                                   | (r      | nm)              |                           |                     |                         | EN 10210-1:2006                    |
|                                   | >       | ≤                | KV2Lmin (J)               |                     |                         |                                    |
|                                   |         | 40               | 40 at -20°C               |                     |                         |                                    |
| Weldability                       | Nominal | thickness        |                           | Values              |                         |                                    |
|                                   | (r      | nm)              |                           | T                   |                         |                                    |
| Chemical                          | >       | ≤                | min (%)                   |                     | (%)                     |                                    |
| composition + CEV (cast analysis) |         | 65               | Al <sub>tot</sub> : 0,020 | C: 0,20             | Si : 0,50               |                                    |
| (cast allalysis)                  |         |                  | Mn : 0,90                 | Mn : 1,65           | P: 0,035                |                                    |
|                                   |         |                  |                           | S: 0,030<br>V: 0,12 | Nb : 0,050<br>Ti : 0,03 |                                    |
|                                   |         |                  |                           | Cr : 0,30           | Ni : 0,50               |                                    |
|                                   |         |                  |                           | Mo : 0,10           | Cu : 0,35               |                                    |
|                                   |         |                  |                           | N : 0,020           | 3,                      |                                    |
|                                   |         | 16               |                           | CEV: 0,43           |                         |                                    |
|                                   | 16      | 65               |                           | CEV: 0,45           |                         |                                    |
| Durability                        | NPD     |                  |                           |                     |                         |                                    |



(according to regulation EU No 305/2011)

No. LO-009-CPR2025-06-12

1) Code of the product type: **1.0549** 

Type: Hot finished structural hollow sections (seamless tubes) S355NLH according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar Q/A manager – LO a.s.

Date: 12.06. 2025

7

| Tolerances on Values                                                      |          |
|---------------------------------------------------------------------------|----------|
|                                                                           |          |
| dimensions and Outside diameter ±1%, min ±0,5 and max ± 10mm              |          |
| shape Wall thickness - 10% (loc12,5%) / +8% mass                          | 0.0040   |
| Ovality 2% EN 10210                                                       | 0-2:2019 |
| Straightness 0,2% of total length and 3mm/1m                              |          |
| Mass -6% / +8% for particular lengths                                     |          |
| Yield strength Nominal thickness Values                                   |          |
| (mm)                                                                      |          |
| > ≤ ReH min (MPa)                                                         |          |
| 16 355                                                                    |          |
| 16 40 345                                                                 |          |
| Tensile strength Nominal thickness (mm) Values                            |          |
| > ≤ Rm min (MPa) max (MPa)                                                |          |
| 65 470 630                                                                |          |
| Elongation Nominal thickness Values                                       |          |
| (mm)                                                                      |          |
| > ≤ min (%)                                                               |          |
| longit. transv.                                                           |          |
| 65 22 20                                                                  |          |
| Impact strength Nominal thickness (mm) Values EN 10210                    | 0-1:2006 |
| > ≤ KV2Lmin (J)                                                           |          |
| 40 27 at -50°C                                                            |          |
| Weldability Nominal thickness Values                                      |          |
| (mm)                                                                      |          |
| Chemical         >         ≤         in (%)         max (%)               |          |
| composition + CEV   65   Al <sub>tot</sub> : 0,020   C : 0,18   Si : 0,50 |          |
| (cast analysis) Mn : 0,90 Mn : 1,65 P : 0,030                             |          |
| S: 0,025   Nb: 0,050                                                      |          |
| V: 0,12 Ti: 0,03                                                          |          |
| Cr : 0,30 Ni : 0,50 Mo : 0,10 Cu : 0,35                                   |          |
| N: 0,020                                                                  |          |
| 16 CEV: 0,43                                                              |          |
| 16 65 CEV: 0,45                                                           |          |
| Durability NPD                                                            |          |



(according to regulation EU No 305/2011)

No. LO-022-CPR2025-06-12

1) Code of the product type: **1.0512** 

Type: Hot finished structural hollow sections (seamless tubes) S355K2H according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

- System of assessment and verification of constancy of performance of the product: System 2+
- 6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager - LO a.s.

| Essential characteristic          |           |           | Harmonised technical specification |                        |                 |
|-----------------------------------|-----------|-----------|------------------------------------|------------------------|-----------------|
| Tolerances on                     |           |           |                                    | Values                 | opeomediion     |
| dimensions and                    | Outside   | diameter  | +1% min +                          | 0,5 and max ± 10mm     |                 |
| shape                             |           | nickness  |                                    | -12,5%) / +8% mass     |                 |
|                                   |           | ality     | 1070 (100.                         | 2%                     | EN 10210-2:2019 |
|                                   |           | ghtness   | 0.2% of tota                       | Il length and 3mm/1m   |                 |
|                                   |           | ass       |                                    | for particular lengths |                 |
| Yield strength                    |           | thickness | -0 /0 / +0 /0 I                    | Values                 |                 |
| riela strength                    |           | nm)       |                                    | values                 |                 |
|                                   | <u>''</u> | ,<br>≤    | ReH min (MPa)                      |                        |                 |
|                                   |           | 16        | 355                                |                        |                 |
|                                   | 16        | 40        | 345                                |                        |                 |
| Tensile strength                  |           | thickness | 343                                | Values                 |                 |
| Tensile strength                  |           | nm)       |                                    | values                 |                 |
|                                   | >         | ≤         | Rm min (MPa)                       | max (MPa)              |                 |
|                                   |           | 3         | 510                                | 680                    |                 |
|                                   | 3         | 100       | 470                                | 630                    |                 |
| Elongation                        | Nominal   | thickness |                                    | Values                 |                 |
|                                   | (r        | nm)       |                                    |                        |                 |
|                                   | >         | ≤         | min (%)                            |                        |                 |
|                                   |           | 40        | 22                                 |                        | EN 10210-1:2006 |
| Impact strength                   |           | thickness |                                    | Values                 |                 |
|                                   |           | nm)       |                                    |                        |                 |
|                                   | >         | ≤         | KV2Lmin (J)                        |                        |                 |
|                                   |           | 40        | 40 at -20°C                        |                        |                 |
| Weldability                       |           | thickness | Values                             |                        |                 |
| Chemical                          |           | nm)       |                                    |                        |                 |
|                                   | >         | ≤         |                                    | max (%)                |                 |
| composition + CEV (cast analysis) |           | 40        |                                    | C: 0,22 P: 0,030       |                 |
| (Gast allalysis)                  |           |           |                                    | Mn: 1,60 S: 0,030      |                 |
|                                   |           | 40        |                                    | Si : 0,55              |                 |
|                                   | 40        | 16        | _                                  | CEV: 0,45              |                 |
| Durchility                        | 16        | 40        | NPD                                | CEV: 0,47              |                 |
| Durability                        |           |           | NPU                                |                        |                 |



(according to regulation EU No 305/2011)

No. LO-023-CPR2025-06-12

1) Code of the product type: 1.8750

> Type: Hot finished structural hollow sections (seamless tubes) S420NH according to EN 10210-1:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

- 5) System of assessment and verification of constancy of performance of the product: System 2+
- EN 10210-1:2006, EN 10210-2:2019 6)

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager - LO a.s.

| Essential            |         |           | Harmonised technical      |                     |                                         |                 |
|----------------------|---------|-----------|---------------------------|---------------------|-----------------------------------------|-----------------|
| characteristic       |         |           | Performance               | •                   |                                         | specification   |
| Tolerances on        |         |           |                           | Values              |                                         | Specification   |
| dimensions and       | Outside | diameter  | ±1%, min ±0               |                     | r + 10mm                                |                 |
| shape                |         | nickness  | - 10% (loc.               |                     |                                         |                 |
|                      |         | ality     | 10,0 (.00.                | 2%                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | EN 10210-2:2019 |
|                      |         | htness    | 0,2% of total             | length and          | l 3mm/1m                                |                 |
|                      |         | ass       | -6% / +8% fe              | •                   |                                         |                 |
| Yield strength       | Nominal | thickness |                           | Values              |                                         |                 |
|                      | (n      | nm)       |                           |                     |                                         |                 |
|                      | >       | ≤         | ReH min<br>(MPa)          |                     |                                         |                 |
|                      |         | 16        | 420                       |                     |                                         |                 |
|                      | 16      | 40        | 400                       |                     |                                         |                 |
| Tensile strength     | Nominal | thickness |                           | Values              |                                         |                 |
| · ·                  | (n      | nm)       |                           |                     |                                         |                 |
|                      | >       | ≤         | Rm min<br>(MPa)           | max                 | (MPa)                                   |                 |
|                      |         | 65        | <b>`520</b> ´             | 68                  | 80                                      |                 |
| Elongation           | Nominal | thickness |                           | Values              |                                         |                 |
| J                    | (n      | nm)       |                           |                     |                                         |                 |
|                      | >       | ≤         |                           | min (%)             |                                         |                 |
|                      |         |           | longit.                   | trar                | isv.                                    |                 |
|                      |         | 65        | 19                        | 1                   | 7                                       |                 |
| Impact strength      | Nominal | thickness |                           | Values              |                                         | EN 10210-1:2006 |
| -                    | (r      | nm)       |                           |                     |                                         |                 |
|                      | >       | ≤         | KV2Lmin (J)               |                     |                                         |                 |
|                      |         | 40        | 40 at -20°C               |                     |                                         |                 |
| Weldability          |         | thickness |                           | Values              |                                         |                 |
|                      | (r      | nm)       |                           | 1                   |                                         |                 |
| Chemical             | ^       | ≤         | min (%)                   |                     | (%)                                     |                 |
| composition +<br>CEV |         | 65        | Al <sub>tot</sub> : 0,020 | C: 0,22             |                                         |                 |
| (cast analysis)      |         |           | Mn : 1,00                 | Mn : 1,70           |                                         |                 |
| (odst dildiysis)     |         |           |                           | S: 0,030<br>V: 0,20 | Nb: 0,050<br>Ti: 0,03                   |                 |
|                      |         |           |                           | Cr : 0,20           | Ni : 0,80                               |                 |
|                      |         |           |                           | Mo : 0,10           |                                         |                 |
|                      |         |           |                           | N: 0,025            |                                         |                 |
|                      |         | 16        |                           | CEV: 0,50           |                                         |                 |
|                      | 16      | 65        |                           | CEV: 0,52           |                                         |                 |
| Durability           |         | L         | NPD                       | , , , , ,           |                                         |                 |



(according to regulation EU No 305/2011)

No. LO-024-CPR2025-06-12

1) Code of the product type: **1.8751** 

Type: Hot finished structural hollow sections (seamless tubes) **S420NLH according to EN 10210-1:2006** 

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

125

fr

| Essential        | 1       |                  | Performance               |                     |                                         | Harmonised technical |
|------------------|---------|------------------|---------------------------|---------------------|-----------------------------------------|----------------------|
| characteristic   |         |                  | remormance                | ;                   |                                         | specification        |
| Tolerances on    |         |                  |                           | Values              |                                         | Specification        |
| dimensions and   | Outside | diameter         | ±1%, min ±0               |                     | t ± 10mm                                |                      |
| shape            |         | nickness         | - 10% (loc.               |                     |                                         |                      |
|                  |         | ality            | 10,0 (.00.                | 2%                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | EN 10210-2:2019      |
|                  |         | ghtness          | 0,2% of total             | length and          | l 3mm/1m                                |                      |
|                  | -       | ass              | -6% / +8% fe              | -                   |                                         |                      |
| Yield strength   | Nominal | thickness        |                           | Values              |                                         |                      |
|                  | (n      | nm)              |                           |                     |                                         |                      |
|                  | >       | ≤                | ReH min<br>(MPa)          |                     |                                         |                      |
|                  |         | 16               | 420                       |                     |                                         |                      |
|                  | 16      | 40               | 400                       |                     |                                         |                      |
| Tensile strength |         | thickness        |                           | Values              |                                         |                      |
|                  |         | nm)              |                           | 1                   |                                         |                      |
|                  | >       | ≤                | Rm min<br>(MPa)           | max                 | (МРа)                                   |                      |
|                  |         | 65               | (MFa)<br>520              | 6                   | 30                                      |                      |
| Elongation       | Nominal | thickness        | 320                       | Values              | <u> </u>                                |                      |
| Liongation       |         | nm)              |                           | Valuoo              |                                         |                      |
|                  | >       | , ≤              |                           | min (%)             |                                         |                      |
|                  |         |                  | longit.                   | traı                | isv.                                    |                      |
|                  |         | 65               | 19                        | 1                   | 7                                       |                      |
| Impact strength  |         | thickness<br>nm) |                           | Values              |                                         | EN 10210-1:2006      |
|                  | >       | ≤                | KV2Lmin (J)               |                     |                                         |                      |
|                  |         | 40               | 27 at -50°C               |                     |                                         |                      |
| Weldability      | -       | thickness<br>nm) |                           | Values              |                                         |                      |
| Chemical         | >       | ≤                | min (%)                   | max                 | x (%)                                   |                      |
| composition +    |         | 65               | Al <sub>tot</sub> : 0,020 | C: 0,22             | Si : 0,60                               |                      |
| CEV              |         |                  | Mn : 1,00                 | Mn : 1,70           | ,                                       |                      |
| (cast analysis)  |         |                  |                           |                     | Nb : 0,050                              |                      |
|                  |         |                  |                           | V: 0,20<br>Cr: 0,30 | Ti : 0,03<br>Ni : 0,80                  |                      |
|                  |         |                  |                           | Mo : 0,10           |                                         |                      |
|                  |         |                  |                           | N: 0,025            | 24.0,70                                 |                      |
|                  |         | 16               |                           | CEV: 0,50           |                                         |                      |
|                  | 16      | 65               |                           | CEV: 0,52           |                                         |                      |
| Durability       |         |                  | NPD                       |                     |                                         |                      |



(according to regulation EU No 305/2011)

No. LO-025-CPR2025-06-12

1) Code of the product type: **1.8953** 

Type: Hot finished structural hollow sections (seamless tubes) **S460NH according to EN 10210-1:2006** 

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https: libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager – LO a.s.

| Essential characteristic | Performance |                                            |                           |                     |                       | Harmonised technical specification |
|--------------------------|-------------|--------------------------------------------|---------------------------|---------------------|-----------------------|------------------------------------|
| Tolerances on            | Values      |                                            |                           | opeomedien.         |                       |                                    |
| dimensions and           | Outside     | de diameter   ±1%, min ±0,5 and max ± 10mm |                           |                     |                       |                                    |
| shape                    |             | hickness                                   | - 10% (loc.               |                     |                       |                                    |
|                          |             | ality                                      | - 10 /8 (100.             | 2%                  | J/0 IIIass            | EN 10210-2:2019                    |
|                          |             | ghtness                                    | 0,2% of total             |                     | 1 3mm/1m              |                                    |
|                          |             | lass                                       | -6% / +8% f               |                     |                       |                                    |
| Yield strength           |             | thickness                                  | -0/8/ <del>T</del> 0/810  | Values              | lenguis               |                                    |
| riela streligar          |             | nm)                                        |                           | values              |                       |                                    |
|                          | >           | ≤                                          | ReH min<br>(MPa)          |                     |                       |                                    |
|                          |             | 16                                         | 460                       |                     |                       |                                    |
|                          | 16          | 40                                         | 440                       |                     |                       |                                    |
| Tensile strength         | Nominal     | thickness                                  |                           | Values              |                       |                                    |
|                          | (r          | nm)                                        |                           |                     |                       |                                    |
|                          | >           | ≤                                          | Rm min<br>(MPa)           | max                 | (MPa)                 |                                    |
|                          |             | 65                                         | 540                       | 7                   | 20                    |                                    |
| Elongation               | Nominal     | thickness                                  | 040                       | Values              |                       |                                    |
| Liongation               |             | nm)                                        |                           | Values              |                       |                                    |
|                          | > ,         | ≤                                          |                           | min (%)             |                       |                                    |
|                          |             |                                            | longit.                   | traı                | nsv.                  |                                    |
|                          |             | 65                                         | 17                        | 1                   | 5                     |                                    |
| Impact strength          | -           | thickness                                  |                           | Values              |                       | EN 10210-1:2006                    |
|                          | >           | ,<br>≤                                     | KV2Lmin (J)               |                     |                       |                                    |
|                          |             | 40                                         | 40 at -20°C               |                     |                       |                                    |
| Weldability              | -           | thickness                                  |                           | Values              |                       |                                    |
| Ch amia al               |             | nm)                                        |                           | ı                   | (0.1)                 |                                    |
| Chemical                 | >           | ≤                                          | min (%)                   |                     | (%)                   |                                    |
| composition +<br>CEV     |             | 65                                         | Al <sub>tot</sub> : 0,020 | C: 0,22             |                       |                                    |
| (cast analysis)          |             |                                            | Mn : 1,00                 | Mn : 1,70           |                       |                                    |
| (oust unurysis)          |             |                                            |                           | S: 0,030<br>V: 0,20 | Nb: 0,050<br>Ti: 0,03 |                                    |
|                          |             |                                            |                           | Cr : 0,30           | Ni : 0,80             |                                    |
|                          |             |                                            |                           | Mo : 0,10           |                       |                                    |
|                          |             |                                            |                           | N: 0,025            |                       |                                    |
|                          |             | 16                                         |                           | CEV: 0,53           |                       |                                    |
| ı                        | 16          | 65                                         |                           | CEV: 0,55           |                       |                                    |
| Durability               |             | NPD                                        |                           |                     |                       |                                    |



(according to regulation EU No 305/2011)

No. LO-026-CPR2025-06-12

1) Code of the product type: **1.8956** 

Type: Hot finished structural hollow sections (seamless tubes) **S460NLH according to EN 10210-1:2006** 

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10210-1:2006, EN 10210-2:2019

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-1. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar Q/A manager – LO a.s.

/

| Essential characteristic | Performance |                  |                           |                                                                                |                                                                       | Harmonised technical specification |
|--------------------------|-------------|------------------|---------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| Tolerances on            | Values      |                  |                           |                                                                                |                                                                       |                                    |
| dimensions and           | Outside     | diameter         | ±1%, min ±0               |                                                                                | ± 10mm                                                                |                                    |
| shape                    | Wall th     | nickness         | - 10% (loc.               | •                                                                              |                                                                       |                                    |
| •                        |             | ality            | 1070 (1001                | 2%                                                                             | 70 111400                                                             | EN 10210-2:2019                    |
|                          |             | htness           | 0,2% of total             |                                                                                | I 3mm/1m                                                              |                                    |
|                          | •           | ass              | -6% / +8% fo              | •                                                                              |                                                                       |                                    |
| Yield strength           |             | thickness        | 0,0,10,010                | Values                                                                         | ogc                                                                   |                                    |
| riora otrongui           | -           | nm)              |                           | raiaco                                                                         |                                                                       |                                    |
|                          | > `         | , ≤              | ReH min<br>(MPa)          |                                                                                |                                                                       |                                    |
|                          |             | 16               | `460´                     |                                                                                |                                                                       |                                    |
|                          | 16          | 40               | 440                       |                                                                                |                                                                       |                                    |
| Tensile strength         | Nominal     | thickness        |                           | Values                                                                         |                                                                       |                                    |
|                          | (n          | nm)              |                           |                                                                                |                                                                       |                                    |
|                          | ۸           | М                | <i>R</i> m min<br>(MPa)   |                                                                                | (MPa)                                                                 |                                    |
|                          |             | 65               | 540                       | 720                                                                            |                                                                       |                                    |
| Elongation               |             | thickness<br>nm) |                           | Values                                                                         |                                                                       |                                    |
|                          | >           | ≤                |                           | min (%)                                                                        |                                                                       |                                    |
|                          |             |                  | longit.                   | trar                                                                           | isv.                                                                  |                                    |
|                          |             | 65               | 17                        | 1                                                                              | 5                                                                     |                                    |
| Impact strength          |             | thickness<br>nm) |                           | Values                                                                         |                                                                       | EN 10210-1:2006                    |
|                          | ۸           | ≤                | KV2Lmin (J)               |                                                                                |                                                                       |                                    |
|                          | -           | 40               | 27 at -50°C               |                                                                                |                                                                       |                                    |
| Weldability              | -           | thickness<br>nm) |                           | Values                                                                         |                                                                       |                                    |
|                          |             | _                | min (%)                   |                                                                                | (%)                                                                   |                                    |
| Chemical                 | >           | ≤                | 111111 (70)               | max                                                                            | (1/0)                                                                 |                                    |
| composition +            | >           | <u>≤</u><br>65   | Al <sub>tot</sub> : 0,020 | C: 0,22                                                                        | ` '                                                                   |                                    |
| composition +<br>CEV     | >           |                  |                           | C: 0,22<br>Mn: 1,70                                                            | Si: 0,60<br>P: 0,030                                                  |                                    |
| composition +            | >           |                  | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025                                                | Si: 0,60<br>P: 0,030<br>Nb: 0,050                                     |                                    |
| composition +<br>CEV     | >           |                  | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025<br>V: 0,20                                     | Si: 0,60<br>P: 0,030<br>Nb: 0,050<br>Ti: 0,03                         |                                    |
| composition +<br>CEV     | >           |                  | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025<br>V: 0,20<br>Cr: 0,30                         | Si: 0,60<br>P: 0,030<br>Nb: 0,050<br>Ti: 0,03<br>Ni: 0,80             |                                    |
| composition +<br>CEV     | >           |                  | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025<br>V: 0,20<br>Cr: 0,30<br>Mo: 0,10             | Si: 0,60<br>P: 0,030<br>Nb: 0,050<br>Ti: 0,03<br>Ni: 0,80             |                                    |
| composition +<br>CEV     | >           | 65               | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025<br>V: 0,20<br>Cr: 0,30<br>Mo: 0,10<br>N: 0,025 | Si: 0,60<br>P: 0,030<br>Nb: 0,050<br>Ti: 0,03<br>Ni: 0,80             |                                    |
| composition +<br>CEV     | ><br>       |                  | Al <sub>tot</sub> : 0,020 | C: 0,22<br>Mn: 1,70<br>S: 0,025<br>V: 0,20<br>Cr: 0,30<br>Mo: 0,10             | Si: 0,60<br>P: 0,030<br>Nb: 0,050<br>Ti: 0,03<br>Ni: 0,80<br>Cu: 0,70 |                                    |



(according to regulation EU No 305/2011)

No. LO-010-CPR2025-06-12

**Essential** 

characteristic

Tolerances on

dimensions and

shape

1) Code of the product type: **1.0039** 

Type: Cold formed welded structural hollow sections (SAWH tubes) **S235JRH according to EN 10219:2006** 

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

System of assessment and verification of constancy of performance of the product: System 2+

6) EN 10219-1:2006, EN 10219-2:2006

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-2. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

**Marian Kubes** Q-Engineer – LO a.s. Michal Kolar

Q/A manager - LO a.s.

Date: 12.06, 2025

|                   | Wall t         | hickness           | r                  | nax ±2mm             | EN 10219-2:2006 |
|-------------------|----------------|--------------------|--------------------|----------------------|-----------------|
|                   | O,             | vality             | 2%, for D/T        | ≥100 must be agreed  |                 |
|                   | Strai          | ghtness            | 0,20% of total     | al length and 3mm/1m |                 |
|                   | N              | lass               | ±6% for            | particular lengths   |                 |
| Yield strength    | Nomina         | l thickness        |                    | Values               |                 |
|                   | (1             | mm)                |                    |                      |                 |
|                   | >              | ≤                  | ReH min (MPa)      |                      |                 |
|                   |                | 16                 | 235                |                      |                 |
|                   | 16             | 40                 | 225                |                      |                 |
| Tensile strength  | Nomina         | I thickness        |                    | Values               |                 |
|                   | (1             | mm)                |                    |                      |                 |
|                   | ^              | ≤                  | Rm min (MPa)       | max (MPa)            |                 |
|                   |                | 40                 | 360                | 510                  |                 |
| Elongation        | Nomina         | l thickness        |                    | Values               |                 |
|                   | (mm)           |                    |                    |                      |                 |
|                   | >              | ≤                  | min (%)            |                      |                 |
|                   |                | 40                 | 24                 |                      | EN 40040 4-0000 |
| Impact strength   | -              | l thickness<br>mm) |                    | Values               | EN 10219-1:2006 |
|                   | >              | ≤                  | KV2Lmin (J)        |                      |                 |
|                   |                | 40                 | 27 at 20°C         |                      |                 |
| Weldability       | -              | l thickness<br>mm) |                    | Values               |                 |
| Chemical          | >              | ≤                  |                    | max (%)              |                 |
| composition + CEV |                | 40                 |                    | C: 0,17 P: 0,040     |                 |
| (cast analysis)   |                |                    |                    | Mn: 1,40 S: 0,040    |                 |
|                   |                |                    |                    | N* : 0,009           |                 |
|                   |                |                    |                    | CEV: 0,35            |                 |
|                   | *If AI/N ≥ 2 a | nd AI ≥ 0,020%,    | N maximum value do | pes not apply.       |                 |
| Durability        |                |                    |                    |                      |                 |

Performance

**Outside diameter** 

Values

±1%, min ±0,5 and max ± 10mm

For D≤406,4mm: T≤5mm ±10% and

T>5mm ±5mm; for D<406,4mm: ±10% and

Harmonised technical

specification

FN 10219-2:2006



(according to regulation EU No 305/2011)

No. LO-011-CPR2025-06-12

1) Code of the product type: 1.0149

> Type: Cold formed welded structural hollow sections (SAWH tubes) **S275J0H according to EN 10219:2006**

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 2+

6) EN 10219-1:2006. EN 10219-2:2006

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-2. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

| Essential characteristic |                 |                 | Performance        |                          |             | Harmonised technical specification |
|--------------------------|-----------------|-----------------|--------------------|--------------------------|-------------|------------------------------------|
| Tolerances on            |                 |                 |                    | Values                   |             | specification                      |
| dimensions and           | Outoida         | diameter        | ±40/ min ±         | values<br>0,5 and max :  |             |                                    |
| shape                    | Outside         | ulameter        |                    |                          |             |                                    |
| Shape                    |                 |                 | For D≤406,4r       |                          |             |                                    |
|                          | Wall 4          | nickness        | T>5mm ±5mm; f      | or D<406,4mi<br>nax ±2mm | m: ±10% and | EN 10219-2:2006                    |
|                          |                 |                 | ·                  |                          |             |                                    |
|                          |                 | ality           |                    | ≥100 must be             |             |                                    |
|                          | -               | ghtness         | ,                  | al length and            |             |                                    |
|                          |                 | ass             | ±6% for            | particular len           | gths        |                                    |
| Yield strength           |                 | thickness       |                    | Values                   |             |                                    |
|                          | (r              | nm)             |                    |                          |             |                                    |
|                          | >               | ≤               | ReH min (MPa)      |                          |             |                                    |
|                          |                 | 16              | 275                |                          |             |                                    |
|                          | 16              | 40              | 265                |                          |             |                                    |
| Tensile strength         | Nominal         | thickness       |                    | Values                   |             |                                    |
|                          | (r              | nm)             |                    |                          |             |                                    |
|                          | >               | ≤               | Rm min (MPa)       | max (                    | MPa)        |                                    |
|                          |                 | 40              | 410                | 56                       | 60          |                                    |
| Elongation               | Nominal         | thickness       |                    | Values                   |             |                                    |
|                          | (r              | nm)             |                    |                          |             |                                    |
|                          | >               | ≤               | min (%)            |                          |             |                                    |
|                          |                 | 40              | 20                 |                          |             | EN 10219-1:2006                    |
| Impact strength          | Nominal         | thickness       |                    | Values                   |             | EN 10219-1:2006                    |
|                          | (r              | nm)             |                    |                          |             |                                    |
|                          | > `             | ,<br>≤          | KV2Lmin (J)        |                          |             |                                    |
|                          |                 | 40              | 27 at 0°C          |                          |             |                                    |
| Weldability              | Nominal         | thickness       |                    | Values                   |             |                                    |
| ,                        | (r              | nm)             |                    |                          |             |                                    |
| Chemical                 | > `             | ,<br>≤          |                    | max                      | (%)         |                                    |
| composition + CEV        |                 | 40              | 1                  | C: 0,20                  | P: 0,035    |                                    |
| (cast analysis)          |                 |                 |                    | Mn : 1,50                | S: 0,035    |                                    |
|                          |                 |                 |                    | N* : 0,009               | , i         |                                    |
|                          |                 |                 |                    | CEV: 0,40                |             |                                    |
|                          | *If Al/N ≥ 2 ar | nd AI ≥ 0,020%, | N maximum value do |                          |             |                                    |
| Durability               |                 |                 | NPD                |                          |             |                                    |



(according to regulation EU No 305/2011)

No. LO-012-CPR2025-06-12

1) Code of the product type: 1.0138

> Type: Cold formed welded structural hollow sections (SAWH tubes) **S275J2H according to EN 10219:2006**

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 2+

6) EN 10219-1:2006. EN 10219-2:2006

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-2. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

| Essential characteristic           |         |                                    | Performance                                                                                                                                                                       |                          |      | Harmonised technical specification |
|------------------------------------|---------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|------------------------------------|
| Tolerances on dimensions and shape | Wall to | e diameter hickness vality ghtness | Values  ±1%, min ±0,5 and max ± 10mm  For D≤406,4mm: T≤5mm ±10% and T>5mm ±5mm; for D<406,4mm: ±10% and max ±2mm  2%, for D/T≥100 must be agreed 0,20% of total length and 3mm/1m |                          |      | EN 10219-2:2006                    |
| Yield strength                     |         | lass<br>I thickness                | ±6% for                                                                                                                                                                           | particular len<br>Values | gths |                                    |
| ricia stretigui                    |         | nm)                                |                                                                                                                                                                                   | v aluc3                  |      |                                    |
|                                    | >       | ≤                                  | ReH min (MPa)                                                                                                                                                                     |                          |      |                                    |
|                                    |         | 16                                 | 275                                                                                                                                                                               |                          |      |                                    |
|                                    | 16      | 40                                 | 265                                                                                                                                                                               |                          |      |                                    |
| Tensile strength                   |         | l thickness<br>mm)                 |                                                                                                                                                                                   | Values                   |      |                                    |
|                                    | >       | ≤                                  | Rm min (MPa)                                                                                                                                                                      | max (                    | •    |                                    |
| F1 (1                              |         | 40                                 | 410                                                                                                                                                                               | 56                       | 50   |                                    |
| Elongation                         |         | l thickness<br>mm)                 |                                                                                                                                                                                   | Values                   |      |                                    |
|                                    | >       | ≤                                  | min (%)                                                                                                                                                                           |                          |      | EN 10219-1:2006                    |
|                                    |         | 40                                 | 20                                                                                                                                                                                |                          |      |                                    |
| Impact strength                    |         | l thickness<br>mm)                 |                                                                                                                                                                                   | Values                   |      |                                    |
|                                    | >       | ≤                                  | KV2Lmin (J)                                                                                                                                                                       |                          |      |                                    |
|                                    |         | 40                                 | 27 at -20°C                                                                                                                                                                       |                          |      |                                    |
| Weldability                        |         | l thickness<br>nm)                 | Values                                                                                                                                                                            |                          |      |                                    |
| Chemical                           | >       | ≤                                  | max (%)                                                                                                                                                                           |                          |      |                                    |
| composition + CEV (cast analysis)  |         | 40                                 | C: 0,20 P: 0,030<br>Mn: 1,50 S: 0,030<br>CEV: 0,40                                                                                                                                |                          |      |                                    |
| Durability                         |         | 1                                  | NPD                                                                                                                                                                               | , ,                      |      |                                    |



(according to regulation EU No 305/2011)

No. LO-013-CPR2025-06-12

1) Code of the product type: 1.0547

> Type: Cold formed welded structural hollow sections (SAWH tubes) \$355J0H according to EN 10219:2006

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product System 2+:

6) EN 10219-1:2006. EN 10219-2:2006

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- Certificate No. 0045-CPR-0807-2. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

| Essential characteristic     |                 |                          | Performance                   |                                                           | Harmonised technical specification |
|------------------------------|-----------------|--------------------------|-------------------------------|-----------------------------------------------------------|------------------------------------|
| Tolerances on dimensions and | Outside         | diameter                 | ±1%. min ±                    | Values<br>0,5 and max ± 10mm                              |                                    |
| shape                        |                 | nickness                 | For D≤406,4r<br>T>5mm ±5mm; f | nm: T≤5mm ±10% and<br>for D<406,4mm: ±10% and<br>max ±2mm | EN 10219-2:2006                    |
|                              | Straiç          | ality<br>ghtness<br>lass | 0,20% of tota                 | ≥100 must be agreed al length and 3mm/1m                  |                                    |
| Yield strength               | Nominal         | thickness<br>nm)         | 16% 101                       | particular lengths<br>Values                              |                                    |
|                              | >               | ≤<br>16                  | ReH min (MPa)<br>355          |                                                           |                                    |
|                              | 16              | 40                       | 345                           |                                                           |                                    |
| Tensile strength             |                 | thickness<br>nm)         |                               | Values                                                    |                                    |
|                              | ۸               | ≤                        | Rm min (MPa)                  | max (MPa)                                                 |                                    |
|                              |                 | 40                       | 470                           | 630                                                       |                                    |
| Elongation                   |                 | thickness<br>nm)         |                               | Values                                                    |                                    |
|                              | >               | ≤                        | min (%)                       |                                                           |                                    |
|                              |                 | 40                       | 20                            |                                                           | EN 10219-1:2006                    |
| Impact strength              |                 | thickness<br>nm)         |                               | Values                                                    |                                    |
|                              | >               | ≤                        | KV2Lmin (J)                   |                                                           |                                    |
| <u> </u>                     |                 | 40                       | 27 at 0°C                     |                                                           |                                    |
| Weldability                  |                 | thickness                |                               | Values                                                    |                                    |
| Chemical                     | •               | nm)                      |                               |                                                           |                                    |
| composition + CEV            | >               | ≤                        | =                             | max (%)                                                   |                                    |
| (cast analysis)              |                 | 40                       |                               | C: 0,22 P: 0,035                                          |                                    |
| (3001 01101)                 |                 |                          |                               | Mn : 1,60 S : 0,035<br>Si : 0,55 N* : 0,009               |                                    |
|                              |                 |                          |                               | CEV: 0,45                                                 |                                    |
|                              | *If AI/N ≥ 2 ar | nd AI ≥ 0,020%,          |                               |                                                           |                                    |
| Durability                   |                 |                          | NPD                           |                                                           |                                    |



(according to regulation EU No 305/2011)

No. LO-014-CPR2025-06-12

1) Code of the product type: **1.0576** 

Type: Cold formed welded structural hollow sections (SAWH tubes) **S355J2H according to EN 10219:2006** 

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s.
Vratimovska 689/117
719 00 Ostrava - Kuncice - Czech Republic
Tel: +420 595 682 151, Fax:+420 596 237 980
https: libertysteelgroup.com/cz

4) ----

- System of assessment and verification of constancy of performance of the product System 2+:
- 6) EN 10219-1:2006, EN 10219-2:2006

Notified factory production control certification body No. 0045 TÜV NORD performed the initial inspection of the manufacturing plant and of factory production control and the continuous surveillance, assessment, and evaluation of factory production control and issued the certificate of conformity of the factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) Certificate No. 0045-CPR-0807-2. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager - LO a.s.

Date: 12.06. 2025

| Characteristic    |         |                |               |                        |             | apecinication   |
|-------------------|---------|----------------|---------------|------------------------|-------------|-----------------|
| Tolerances on     |         |                |               | Values                 |             |                 |
| dimensions and    | Outside | e diameter     | ±1%, min ±    | 0,5 and max :          | ± 10mm      |                 |
| shape             |         |                | For D≤406,4r  | mm: T≤5mm :            | է10% and    |                 |
|                   |         |                | T>5mm ±5mm; f | for D<406,4m           | m: ±10% and | EN 10219-2:2006 |
|                   | Wall t  | hickness       | ı             | max ±2mm               |             | EN 10219-2.2006 |
|                   | O       | <i>r</i> ality | 2%, for D/T   | ≥100 must be           | agreed      |                 |
|                   | Straig  | ghtness        |               | al length and          |             |                 |
|                   |         | lass           | ±6% for       | particular ler         | gths        |                 |
| Yield strength    | Nomina  | l thickness    |               | Values                 |             |                 |
|                   | (1      | nm)            |               |                        |             |                 |
|                   | ^       | ≤              | ReH min (MPa) |                        |             |                 |
|                   |         | 16             | 355           |                        |             |                 |
|                   | 16      | 40             | 345           |                        |             |                 |
| Tensile strength  | Nomina  | l thickness    |               | Values                 |             |                 |
|                   | (1      | nm)            |               |                        |             |                 |
|                   | ^       | ≤              | Rm min (MPa)  | max                    | (MPa)       |                 |
|                   |         | 40             | 470           |                        | 30          |                 |
| Elongation        |         | l thickness    |               | Values                 |             |                 |
|                   | (1      | mm)            |               |                        |             |                 |
|                   | >       | ≤              | min (%)       |                        |             |                 |
|                   |         | 40             | 20            |                        |             | EN 10219-1:2006 |
| Impact strength   |         | l thickness    |               | Values                 |             |                 |
|                   | •       | nm)            | 10.01 : (1)   | Г                      |             |                 |
|                   | >       | ≤              | KV2Lmin (J)   |                        |             |                 |
|                   |         | 40             | 27 at -20°C   |                        |             |                 |
| Weldability       |         | l thickness    |               | Values                 |             |                 |
| Chemical          | •       | mm)            |               |                        | . (0/)      |                 |
| composition + CEV | >       | ≤              | max (%)       |                        |             |                 |
| (cast analysis)   |         | 40             |               | C: 0,22                | P: 0,030    |                 |
| (oast analysis)   |         |                |               | Mn : 1,60<br>Si : 0,55 | S: 0,030    |                 |
|                   |         |                |               | CEV: 0,45              |             |                 |
| Durability        |         | l              | NPD           | JEV. 0,43              |             |                 |
| Durability        |         |                |               |                        |             |                 |

Performance

**Essential** 

characteristic

Harmonised technical

specification



(according to regulation EU No 305/2011)

No. LO-015-CPR2025-06-12

Essential

characteristic

Tolerances on

1) Code of the product type: 1.0252

> Type: Non-alloy seamless steel tubes L235 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 4

6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

Date: 12.06, 2025

| TOTEL ALICES OF         |          |                    |                    | Values                           |             |                         |
|-------------------------|----------|--------------------|--------------------|----------------------------------|-------------|-------------------------|
| dimensions and          | Outside  | e diameter         | ±1% c              | or min ±0,5 m                    | m           |                         |
| shape                   | Wall t   | hickness           | EN 10224:20        | EN 10224:2002 + A1:2005, table 7 |             | EN 10224:2002 + A1:2005 |
|                         | Out of I | roundness          | 2% m               | 2% max for D/T≤100               |             |                         |
|                         | Strai    | ghtness            | 0,2% L             |                                  |             |                         |
| Yield strength          | Nomina   | l thickness        | Values             |                                  |             |                         |
| •                       | (1       | mm)                |                    |                                  |             |                         |
|                         | >        |                    | ReH min (MPa)      |                                  |             |                         |
|                         |          | 16                 | 235                |                                  |             |                         |
|                         | 16       |                    | 225                |                                  |             |                         |
| Tensile strength        | Nomina   | I thickness        |                    | Values                           |             |                         |
| •                       | (1       | mm)                |                    |                                  |             |                         |
|                         | ≥        | ≤                  | Rm min (MPa)       | max                              | (MPa)       |                         |
|                         | 2,0      | 25,0               | 360                | 50                               | 00          |                         |
| Elongation              | Nomina   | l thickness        |                    | Values                           |             |                         |
|                         |          | mm)                |                    |                                  |             |                         |
|                         | ≥        | ≤                  | long. min (%)      | transv.                          | min (%)     |                         |
|                         | 2,0      | 25,0               | 25                 | 2                                | 3           |                         |
| Flattening test         | -        | l thickness        |                    | Test                             |             |                         |
|                         |          | mm)                |                    |                                  |             |                         |
|                         | >        | ≤                  |                    |                                  |             |                         |
|                         | 2,0      | 25,0               |                    | no cracks                        |             |                         |
| Reaction to fire        | -        | l thickness        | Mandated cla       | ass as per 96                    | /303/EEC    |                         |
|                         |          | mm)                |                    |                                  |             | EN 10224:2002 + A1:2005 |
|                         | ≥        | ≤                  | _                  | Class A4                         |             |                         |
|                         | 2,0      | 25,0               |                    | Class A1                         |             |                         |
| Tightness               |          | l thickness        |                    | Test                             |             |                         |
|                         |          | mm)                | Uludus statis tast | -4                               | TMD-/F-     |                         |
|                         | ≥        | ≤                  | Hydrostatic test   | at a minimur<br>acc. with EN     |             |                         |
|                         | 2,0      | 25,0               | OI EWIT III a      |                                  | 10240-1     |                         |
| Dangerous<br>substances | -        | l thickness<br>mm) |                    | Values                           |             |                         |
|                         | ≥ .      | ≤                  | Any dang. sub      | stances in ex                    | cess of the |                         |
|                         | 2,0      | 25,0               | max. permit        | ted levels spe                   | ecified in  |                         |
|                         |          | -                  | relevant l         | European sta                     | ndard       |                         |
| Chemical                |          | l thickness        |                    | Values                           |             |                         |
| composition             |          | mm)                |                    |                                  |             |                         |
| (cast analysis)         | ≥        | ≤                  |                    |                                  | (%)         |                         |
|                         | 2,0      | 25,0               |                    | C: 0,16                          | P: 0,030    |                         |
|                         |          |                    |                    | Mn : 1,20                        | S: 0,025    |                         |
|                         |          |                    |                    | Si : 0,35                        |             |                         |
| Durability              | NPD      |                    |                    |                                  |             |                         |

Performance

Values

Harmonised technical

specification



(according to regulation EU No 305/2011)

No. LO-016-CPR2025-06-12

1) Code of the product type: **1.0260** 

Type: Non-alloy seamless steel tubes L275 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/177

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https: libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 4

6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06, 2025

|   | Essential characteristic | Performance   |                                                |                    |                              |                         | Harmonised technical specification |
|---|--------------------------|---------------|------------------------------------------------|--------------------|------------------------------|-------------------------|------------------------------------|
|   | Tolerances on            | Values        |                                                |                    |                              | •                       |                                    |
|   | dimensions and           | Outside       | diameter                                       | ±1% (              | or min ±0,5 m                | m                       |                                    |
|   | shape                    |               | all thickness EN 10224:2002 + A1:2005, table 7 |                    |                              | EN 10224:2002 + A1:2005 |                                    |
|   |                          | Out of r      | oundness                                       | 2% max for D/T≤100 |                              |                         |                                    |
|   |                          |               | htness                                         |                    | 0,2% L                       |                         |                                    |
|   | Yield strength           |               | thickness                                      |                    | Values                       |                         |                                    |
|   |                          |               | nm)                                            |                    |                              |                         |                                    |
|   |                          | > `           | ,<br>                                          | ReH min (MPa)      |                              |                         |                                    |
|   |                          |               | 16                                             | 275                |                              |                         |                                    |
|   |                          | 16            | -                                              | 265                |                              |                         |                                    |
| F | Tensile strength         | Nominal       | thickness                                      |                    | Values                       |                         |                                    |
|   | <b>J</b>                 | (r            | nm)                                            |                    |                              |                         |                                    |
|   |                          | ≥ `           | ,<br>≤                                         | Rm min (MPa)       | max                          | (MPa)                   |                                    |
|   |                          | 2,0           | 25,0                                           | 430                | 57                           | 70                      |                                    |
|   | Elongation               | Nominal       | thickness                                      |                    | Values                       |                         |                                    |
|   | •                        | (r            | nm)                                            |                    |                              |                         |                                    |
|   |                          | ≥             | ≤                                              | long. min (%)      | transv.                      | min (%)                 |                                    |
|   |                          | 2,0           | 25,0                                           | 21                 |                              | 9                       |                                    |
|   | Flattening test          |               | thickness                                      |                    | Test                         |                         |                                    |
|   |                          | (r            | nm)                                            |                    |                              |                         |                                    |
|   |                          | >             | ≤                                              |                    |                              |                         |                                    |
|   |                          | 2,0           | 25,0                                           |                    | no cracks                    |                         |                                    |
|   | Reaction to fire         |               | thickness                                      | Mandated cla       | ass as per 96                | /303/EEC                |                                    |
|   |                          |               | nm)                                            |                    |                              |                         | EN 10224:2002 + A1:2005            |
|   |                          | ≥             | ≤                                              |                    | Class A1                     |                         |                                    |
| - | <b>-</b>                 | 2,0           | 25,0                                           |                    |                              |                         |                                    |
|   | Tightness                |               | thickness                                      |                    | Test                         |                         |                                    |
|   |                          | <u>'</u><br>≥ | nm)                                            | Hydrostatic test   | at a minimus                 | m of 7MDo/Fo            |                                    |
|   |                          |               | ≤                                              |                    | at a minimur<br>acc. with EN |                         |                                    |
| - | Dan manaua               | 2,0           | 25,0<br>thickness                              | OI LIVIT III 8     | Values                       | 10240-1                 |                                    |
|   | Dangerous substances     |               | mm)                                            |                    | values                       |                         |                                    |
|   | Substances               | <u>'</u><br>≥ | , ,                                            | Any dang. sub      | stances in ex                | rooss of the            |                                    |
|   |                          |               | ≤                                              |                    | ted levels sp                |                         |                                    |
|   |                          | 2,0           | 25,0                                           |                    | European sta                 |                         |                                    |
| H | Chemical                 | Nominal       | thickness                                      |                    | Values                       |                         |                                    |
|   | composition              |               | nm)                                            |                    |                              |                         |                                    |
|   | (cast analysis)          | ≥ `           |                                                |                    | max                          | <b>(%)</b>              |                                    |
|   |                          | 2,0           | 25,0                                           | 1                  | C: 0,20                      | P: 0,030                |                                    |
|   |                          | ,-            |                                                |                    | Mn: 1,40                     | S: 0,025                |                                    |
|   |                          |               |                                                |                    | Si: 0,40                     |                         |                                    |
|   | Durability               |               |                                                |                    |                              |                         |                                    |

Performance

Harmonised technical

Feeential



(according to regulation EU No 305/2011)

No. LO-017-CPR2025-06-12

1) Code of the product type: 1.0419

> Type: Non-alloy seamless steel tubes L355 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

5) System of assessment and verification of constancy of performance of the product: System 4

6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s.

Michal Kolar Q/A manager - LO a.s.

| Essential        |          |                  | Performance      |                          | Harmonised technical    |
|------------------|----------|------------------|------------------|--------------------------|-------------------------|
| characteristic   |          |                  |                  |                          | specification           |
| Tolerances on    |          |                  |                  | Values                   |                         |
| dimensions and   |          | diameter         |                  | or min ±0,5 mm           |                         |
| shape            | Wall th  | nickness         |                  | 002 + A1:2005, table 7   | EN 10224:2002 + A1:2005 |
|                  | Out of r | oundness         | 2% m             | ax for D/T≤100           |                         |
|                  | Straig   | ghtness          |                  | 0,2% L                   |                         |
| Yield strength   | Nominal  | thickness        |                  | Values                   |                         |
|                  | (r       | nm)              |                  |                          |                         |
|                  | ^        | ≤                | ReH min (MPa)    |                          |                         |
|                  |          | 16               | 355              |                          |                         |
|                  | 16       |                  | 345              |                          |                         |
| Tensile strength | Nominal  | thickness        |                  | Values                   |                         |
|                  | (r       | nm)              |                  |                          |                         |
|                  | N        | ≤                | Rm min (MPa)     | max (MPa)                |                         |
|                  | 2,0      | 25,0             | 500              | 650                      |                         |
| Elongation       |          | thickness        |                  | Values                   |                         |
|                  |          | nm)              |                  |                          |                         |
|                  | 2        | ≤                | long. min (%)    | transv. min (%)          |                         |
|                  | 2,0      | 25,0             | 21               | 19                       |                         |
| Flattening test  |          | thickness        |                  | Test                     |                         |
|                  |          | nm)              |                  |                          |                         |
|                  | >        | ≤                |                  |                          |                         |
| D (1 ( )         | 2,0      | 25,0             |                  | no cracks                |                         |
| Reaction to fire |          | thickness<br>nm) | Mandated cla     | ass as per 96/303/EEC    | EN 10224:2002 + A1:2005 |
|                  | ≥ `      | ,<br>≤           |                  |                          |                         |
|                  | 2.0      | 25.0             |                  | Class A1                 |                         |
| Tightness        | Nominal  | thickness        |                  | Test                     |                         |
|                  | (r       | nm)              |                  |                          |                         |
|                  |          | ≤                | Hydrostatic test | at a minimum of 7MPa/5s  |                         |
|                  | 2,0      | 25,0             | or EMT in a      | icc. with EN 10246-1     |                         |
| Dangerous        | Nominal  | thickness        |                  | Values                   |                         |
| substances       | (r       | nm)              |                  |                          |                         |
|                  | 2        |                  | Any dang. sub    | stances in excess of the |                         |
|                  | 2,0      | 25,0             |                  | ed levels specified in   |                         |
|                  |          |                  | relevant E       | European standard        |                         |
| Chemical         |          | thickness        |                  | Values                   |                         |
| composition      |          | nm)              |                  |                          |                         |
| (cast analysis)  | ≥        | ≤                | ] [              | max (%)                  |                         |
|                  | 2,0      | 25,0             |                  | C: 0,22 P: 0,030         |                         |
|                  |          |                  |                  | Mn: 1,60 S: 0,025        |                         |
|                  |          |                  |                  | Si : 0,55                |                         |
| Durability       |          |                  | NPD              |                          |                         |



(according to regulation EU No 305/2011)

No. LO-018-CPR2025-06-12

**Essential** 

1) Code of the product type: **1.0252** 

Type: Non-alloy welded steel tubes L235 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s.
Vratimovska 689/117
719 00 Ostrava - Kuncice - Czech Republic
Tel: +420 595 682 151, Fax:+420 596 237 980
https: libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 4

6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

**Marian Kubes** Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06, 2025

| characteristic                          |                |           |                      |                                              |          | specification           |
|-----------------------------------------|----------------|-----------|----------------------|----------------------------------------------|----------|-------------------------|
| Tolerances on                           |                |           |                      | Values                                       |          |                         |
| dimensions and                          | Outside        | diameter  | ±0,75%               | 6, max ± 6,0 mm                              |          |                         |
| shape                                   | Wall thickness |           |                      | ±7,5%                                        | EN 10    | 224.2002 . 44.2005      |
|                                         |                |           | 2% max for D/Ts      | 100, for D/T>100 mι                          | st be    | EN 10224:2002 + A1:2005 |
|                                         | Out of r       | oundness  |                      | agreed                                       |          |                         |
|                                         | Straig         | ghtness   |                      | 0,2% L                                       |          |                         |
| Yield strength                          | Nominal        | thickness |                      | Values                                       |          |                         |
|                                         | (mm)           |           |                      |                                              |          |                         |
|                                         | >              | ≤         | ReH min (MPa)        | ReH min (MPa)                                |          |                         |
|                                         |                | 16        | 235                  |                                              |          |                         |
|                                         | 16             |           | 225                  |                                              |          |                         |
| Tensile strength                        | Nominal        | thickness |                      | Values                                       |          |                         |
|                                         | (r             | nm)       |                      |                                              |          |                         |
|                                         | ≥              | ≤         | Rm min (MPa)         | max (MPa)                                    |          |                         |
|                                         | 2,0            | 25,0      | 360                  | 500                                          |          |                         |
| Elongation                              | Nominal        | thickness |                      | Values                                       |          |                         |
|                                         | (r             | nm)       |                      |                                              |          |                         |
|                                         | ≥              | ≤         | long. min (%)        | min (%) transv. min (%)                      |          |                         |
|                                         | 2,0            | 25,0      | 25                   | 23                                           |          |                         |
| Bending                                 |                | thickness | Test                 |                                              |          |                         |
| test                                    |                | nm)       |                      |                                              |          |                         |
|                                         | >              | ≤         |                      |                                              |          |                         |
|                                         | 2,0            | 25,0      |                      | no cracks                                    |          |                         |
| Reaction to fire                        |                | thickness | Mandated cl          | ass as per 96/303/EE                         |          |                         |
|                                         |                | nm)       |                      |                                              | EN 10    | 224:2002 + A1:2005      |
|                                         | ≥              | ≤         | 4                    | Class A1                                     |          |                         |
| <b>-</b> 1.4                            | 2,0            | 25,0      |                      |                                              |          |                         |
| Tightness                               |                | thickness |                      | Test                                         |          |                         |
|                                         |                | nm)       | Harden et et e te et | -1                                           | D - /F - |                         |
|                                         | ≥              | ≤         |                      | at a minimum of 7M                           |          |                         |
|                                         | 2,0            | 25,0      | OF EIVIT IN          |                                              |          |                         |
| Dangerous                               |                | thickness |                      | Values                                       |          |                         |
| substances                              |                | nm)       | A I                  |                                              | di-      |                         |
|                                         | ≥              | ≤         |                      | stances in excess or<br>ted levels specified |          |                         |
|                                         | 2,0            | 25,0      |                      | European standard                            | n        |                         |
| Chemical                                | Nominal        | thickness | TCICVAIIL            | Values                                       |          |                         |
| composition                             |                | nm)       |                      | values                                       |          |                         |
| (cast analysis)                         | ≥ '.           | ≤         |                      | max (%)                                      |          |                         |
| (************************************** | 2,0            | 25,0      | -                    | C: 0,16 P:0                                  | 030      |                         |
|                                         | 2,0            | 25,0      |                      | Mn: 1,20 S: 0                                |          |                         |
|                                         |                |           |                      | Si : 0,35                                    |          |                         |
| Durability                              |                | 1         | NPD                  | ,                                            |          |                         |
|                                         | l              |           |                      |                                              |          |                         |

Performance

Harmonised technical



(according to regulation EU No 305/2011)

No. LO-019-CPR2025-06-12

Essential

characteristic

1) Code of the product type: **1.0260** 

Type: Non-alloy welded steel tubes L275 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4) ----

- 5) System of assessment and verification of constancy of performance of the product: System 4
- 6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06, 2025

| characteristic                 |                |             |                 |                                  | specification           |
|--------------------------------|----------------|-------------|-----------------|----------------------------------|-------------------------|
| Tolerances on                  |                |             |                 | Values                           |                         |
| dimensions and                 | Outside        | e diameter  | ±0,75%          | 6, max ± 6,0 mm                  |                         |
| shape                          | Wall thickness |             |                 | ±7,5%                            | EN 10224:2002 + A1:2005 |
|                                |                |             | 2% max for D/Ts | ≤100, for D/T>100 must be        | EN 10224:2002 + A1:2005 |
|                                | Out of I       | roundness   |                 | agreed                           |                         |
|                                | Strai          | ghtness     |                 | 0,2% L                           |                         |
| Yield strength                 | Nomina         | l thickness |                 | Values                           |                         |
| _                              | (1             | mm)         |                 |                                  |                         |
|                                | >              | ≤           | ReH min (MPa)   |                                  |                         |
|                                |                | 16          | 275             |                                  |                         |
|                                | 16             |             | 265             |                                  |                         |
| Tensile strength               | Nomina         | I thickness |                 | Values                           |                         |
| J                              | (1             | mm)         |                 |                                  |                         |
|                                | ≥              | ≤           | Rm min (MPa)    | max (MPa)                        |                         |
|                                | 2,0            | 25,0        | 430             | 570                              |                         |
| Elongation                     | Nomina         | l thickness |                 | Values                           |                         |
|                                | (1             | mm)         |                 |                                  |                         |
|                                | ≥              | ≤           | long. min (%)   | transv. min (%)                  |                         |
|                                | 2,0            | 25,0        | 21              | 19                               |                         |
| Bending                        | Nomina         | l thickness | Test            |                                  |                         |
| test                           | (1             | mm)         |                 |                                  |                         |
|                                | >              | ≤           |                 |                                  |                         |
|                                | 2,0            | 25,0        |                 | no cracks                        |                         |
| Reaction to fire               | Nomina         | l thickness | Mandated cl     | ass as per 96/303/EEC            |                         |
|                                | (1             | mm)         |                 |                                  | EN 10224:2002 + A1:2005 |
|                                | ≥              | ≤           |                 |                                  |                         |
|                                | 2,0            | 25,0        |                 | Class A1                         |                         |
| Tightness                      |                | l thickness |                 | Test                             |                         |
|                                |                | mm)         |                 |                                  |                         |
|                                | ≥              | ≤           |                 | at a minimum of 7MPa/5s          |                         |
|                                | 2,0            | 25,0        | or EMT in a     | acc. with EN 10246-1             |                         |
| Dangerous                      |                | l thickness |                 | Values                           |                         |
| substances                     |                | mm)         |                 |                                  |                         |
|                                | ≥              | ≤           |                 | stances in excess of the         |                         |
|                                | 2,0            | 25,0        |                 | ted levels specified in          |                         |
| O                              |                |             | relevant        | European standard                |                         |
| Chemical                       |                | l thickness |                 | Values                           |                         |
| composition<br>(cast analysis) |                | mm)         |                 | ··· • · · · (0/)                 |                         |
| (cast allalysis)               | ≥              | ≤           | 4               | max (%)                          |                         |
|                                | 2,0            | 25,0        |                 | C: 0,20 P: 0,030                 |                         |
|                                | ]              |             |                 | Mn : 1,40 S : 0,025<br>Si : 0,40 |                         |
| Durability                     | 1              | <u> </u>    | NPD             | 31 . 0,40                        |                         |
| טעומטווונץ                     | <u> </u>       |             | משא             |                                  |                         |

Performance

Harmonised technical

specification



(according to regulation EU No 305/2011)

No. LO-020-CPR2025-06-12

1) Code of the product type: **1.0419** 

Type: Non-alloy welded steel tubes L355 according to EN 10224:2002 + A1:2005

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https: libertysteelgroup.com/cz

4) ----

5) System of assessment and verification of constancy of performance of the product: System 4

6) EN 10224:2002 + A1:2005

The initial type testing was performed by the manufacturer whereas LO a.s. performs permanent surveillance, assessment, and evaluation of factory production control.

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. **Michal Kolar** Q/A manager – LO a.s.

Date: 12.06, 2025

| characteristic          | renormance                 |                   |                                                                         |            |                         | specification           |  |
|-------------------------|----------------------------|-------------------|-------------------------------------------------------------------------|------------|-------------------------|-------------------------|--|
| Tolerances on           | Values                     |                   |                                                                         |            |                         | •                       |  |
| dimensions and          | Outside diameter           |                   | ±0,75%, max ± 6,0 mm                                                    |            |                         | EN 10224:2002 + A1:2005 |  |
| shape                   | Wall thickness             |                   | ±7,5%                                                                   |            |                         |                         |  |
|                         |                            |                   | 2% max for D/T≤100, for D/T>100 must be                                 |            |                         |                         |  |
|                         | Out of roundness           |                   | agreed                                                                  |            |                         |                         |  |
|                         | Straightness               |                   | 0,2% L                                                                  |            |                         |                         |  |
| Yield strength          | Nominal thickness (mm)     |                   | Values                                                                  |            |                         |                         |  |
|                         | (mm)<br>> ≤                |                   | ReH min (MPa)                                                           |            |                         |                         |  |
|                         |                            | <u>&gt;</u><br>16 | 355                                                                     |            |                         |                         |  |
|                         | 16                         | 10                | 345                                                                     |            |                         |                         |  |
| Tensile strength        |                            |                   | 343                                                                     | Values     |                         |                         |  |
| rensile strength        | Nominal thickness (mm)     |                   | Values                                                                  |            |                         |                         |  |
|                         | ≥ (                        |                   | Rm min (MPa)                                                            | max (MPa)  |                         |                         |  |
|                         | 2,0                        | 25,0              | 500                                                                     |            | 50                      | 1                       |  |
| Elongation              | Nominal                    | thickness         |                                                                         |            |                         |                         |  |
| Ū                       | (mm)                       |                   |                                                                         |            |                         |                         |  |
|                         | ≥                          | ≤                 | long. min (%)                                                           | transv.    | min (%)                 |                         |  |
|                         | 2,0                        | 25,0              | 21                                                                      | 19         |                         |                         |  |
| Bending                 | Nominal thickness          |                   | Test                                                                    |            |                         |                         |  |
| test                    | (mm)                       |                   |                                                                         |            |                         |                         |  |
|                         | >                          | ≤                 |                                                                         |            |                         |                         |  |
|                         | 2,0                        | 25,0              | no cracks                                                               |            |                         |                         |  |
| Reaction to fire        | Nominal thickness          |                   | Mandated class as per 96/303/EEC                                        |            | EN 10224:2002 + A1:2005 |                         |  |
|                         | (mm)                       |                   |                                                                         |            |                         |                         |  |
|                         | ≥                          | ≤                 | 01 44                                                                   |            |                         |                         |  |
|                         | 2,0 25,0                   |                   | Class A1                                                                |            |                         |                         |  |
| Tightness               | Nominal thickness          |                   | Test                                                                    |            |                         |                         |  |
|                         | (mm)<br>2 <                |                   | Hydrostatic toot                                                        | at a minim |                         |                         |  |
|                         |                            | ≤                 | Hydrostatic test at a minimum of 7MPa/5s or EMT in acc. with EN 10246-1 |            |                         |                         |  |
| Dongorous               | 2,0 25,0 Nominal thickness |                   | Values                                                                  |            |                         |                         |  |
| Dangerous<br>substances | (mm)                       |                   | values                                                                  |            |                         |                         |  |
|                         | ≥ (1)                      | )<br>≤            | Any dang. substances in excess of the                                   |            |                         |                         |  |
|                         | 2,0                        | 25,0              | max. permitted levels specified in                                      |            |                         |                         |  |
|                         | ,                          | ,                 | relevant European standard                                              |            |                         |                         |  |
| Chemical                |                            | thickness         | Values                                                                  |            |                         |                         |  |
| composition             | (mm)                       |                   |                                                                         |            |                         |                         |  |
| (cast analysis)         | ≥                          | ≤                 |                                                                         |            | x (%)                   |                         |  |
|                         | 2,0                        | 25,0              |                                                                         | C: 0,22    | P: 0,030                |                         |  |
|                         |                            |                   |                                                                         | Mn : 1,60  | S: 0,025                |                         |  |
| Daniel III              |                            |                   | NPD                                                                     | Si : 0,55  |                         |                         |  |
| Durability              |                            |                   |                                                                         |            |                         |                         |  |

Performance

Harmonised technical

**Essential** 



(according to regulation EU No 305/2011)

No. LO-021-CPR2025-06-12

Essential

characteristic

Tolerances on

1) Code of the product type: 1.0026

> Type: Non-alloy steel tubes S195T according to EN 10255:2004 + A1:2007

2) Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:

To be used in welded structures

3) Liberty Ostrava a.s. Vratimovska 689/117

> 719 00 Ostrava - Kuncice - Czech Republic Tel: +420 595 682 151, Fax:+420 596 237 980 https://libertysteelgroup.com/cz

4)

System of assessment and verification of constancy of 5) performance of the product: System 3 6)

EN 10255:2004 + A1:2007

The initial type testing was performed by notified test laboratory and manufacturer whereas the internal factory production control is under permanent surveillance and assessment of the manufacturer. In addition, the certification body No. 0045 TÜV NORD issued certificate of conformity with requirements acc. to DIN EN 10255:2004+A1:2007

- 7) The performance of the product identified in point 1) is in conformity with the declared performance in the table.
- 8) TÜV file 1326WL31702. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 3. Signed for and on behalf of the manufacturer by:

Marian Kubes Q-Engineer – LO a.s. Michal Kolar

Q/A manager - LO a.s.

Date: 12.06. 2025

| i dici alloco dil |                   |             |                                          | T UIUCO   |          |                         |
|-------------------|-------------------|-------------|------------------------------------------|-----------|----------|-------------------------|
| dimensions and    | Outside diameter  |             | EN 10255:2004 + A1:2007, Table 2         |           |          | EN 10255:2004 + A1:2007 |
| shape             | Wall thickness    |             | +12,5% / -12,5%                          |           |          |                         |
|                   | Out of roundness  |             | Included in diameter tolerance           |           |          |                         |
|                   | Straightness      |             | 0,002L                                   |           |          |                         |
|                   | Mass              |             | EN 10255:2004 + A1:2007, Table 2         |           |          |                         |
| Yield strength    | Nominal thickness |             | Values                                   |           |          |                         |
| -                 | (mm)              |             |                                          |           |          |                         |
|                   | ≥                 | ≤           | ReH min                                  |           |          |                         |
|                   |                   |             | (MPa)                                    |           |          |                         |
|                   | 2,0               | 5,4         | 195                                      |           |          |                         |
| Tensile strength  | Nominal thickness |             | Values                                   |           |          |                         |
|                   | (mm)              |             |                                          |           |          |                         |
|                   | ≥                 | ≤           | Rm min                                   | max       | (MPa)    |                         |
|                   |                   |             | (MPa)                                    | _         |          |                         |
|                   | 2,0               | 5,4         | 320                                      | 520       |          | I                       |
| Elongation        | Nominal thickness |             | Values                                   |           |          |                         |
|                   | (mm)              |             | i (0/)                                   |           |          |                         |
|                   | ≥                 | ≤ 5.4       | min (%)                                  |           |          |                         |
| Desertion to Con- | 2,0               | 5,4         | 20                                       |           |          |                         |
| Reaction to fire  | Nominal thickness |             | Mandated class as per<br>96/303/EEC      |           |          |                         |
|                   | (mm)<br>≥         |             | 96/303/EEC                               |           |          |                         |
|                   | 2.0               | ≤<br>5.4    | Class A1                                 |           |          | EN 10255:2004 + A1:2007 |
| Tightness         | Nominal thickness |             | Test                                     |           |          |                         |
| Tightness         | (mm)              |             |                                          |           |          |                         |
|                   | ≥                 | ≤           | Hydrostatic test at a minimum of 5MPa/5s |           |          |                         |
|                   | 2,0 5,4           |             | or EMT in acc. With EN 10246-1           |           |          |                         |
| Dangerous         | Nomina            | l thickness | Values                                   |           |          |                         |
| substances        | (mm)              |             |                                          |           |          |                         |
|                   | ≥                 | ≤           | Any dang. substances in excess of the    |           |          |                         |
|                   | 2,0               | 5,4         | max. permitted levels specified in       |           |          |                         |
|                   |                   |             | relevant European standard               |           |          |                         |
| Chemical          |                   | l thickness | Values                                   |           |          |                         |
| composition       |                   | mm)         |                                          | T         |          |                         |
| (cast analysis)   | ≥                 | ≤           |                                          |           | (%)      |                         |
|                   | 2,0               | 5,4         |                                          | C: 0,20   | P: 0,035 |                         |
|                   |                   |             |                                          | Mn : 1,40 | S: 0,030 |                         |
| Durability        |                   | I           |                                          |           |          |                         |
|                   | •                 |             |                                          |           |          |                         |

Performance

Values

Harmonised technical

specification